Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km)
نویسنده
چکیده
Submesoscale (1–200km) wavenumber spectra of kinetic and potential energy and tracer variance are obtained from in situ observations in theGulf Stream region and in the eastern subtropical North Pacific. In the Gulf Stream region, steep kinetic energy spectra at scales between 200 and 20km are consistent with predictions of interior quasigeostrophic–turbulence theory, both in the mixed layer and in the thermocline. At scales below 20km, the spectra flatten out, consistent with a growing contribution of internal-wave energy at small scales. In the subtropical NorthPacific, the energy spectra are flatter and inconsistentwith predictions of interior quasigeostrophic–turbulence theory. The observed spectra and their dependence on depth are also inconsistent with predictions of surface quasigeostrophic–turbulence theory for the observedocean stratification. It appears that unbalancedmotions,most likely internal tides at large scales and the internal-wave continuum at small scales, dominate the energy spectrum throughout the submesoscale range. Spectra of temperature variance along density surfaces, which are not affected by internal tides, are also inconsistent with predictions of geostrophic-turbulence theories. Reasons for this inconsistency could be the injection of energy in the submesoscale range by small-scale baroclinic instabilities or modifications of the spectra by coupling between surface and interior dynamics or by ageostrophic frontal effects.
منابع مشابه
Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts
This project is part of the DRI on Scalable Lateral Mixing and Coherent Turbulence that aims to characterize lateral mixing in the ocean on scales of 10m-10 km, the submesoscales. Lateral mixing at the submesoscales is not accounted for in present-day ocean models. This deficiency is a potential source of error in the numerical prediction of the distribution of temperature, salt, nutrients, phy...
متن کاملMixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts
This project is part of the DRI on Scalable Lateral Mixing and Coherent Turbulence that aims to characterize lateral mixing in the ocean on scales of 10m-10 km, the submesoscales. Lateral mixing at the submesoscales is not accounted for in present-day ocean models. This deficiency is a potential source of error in the numerical prediction of the distribution of temperature, salt, nutrients, phy...
متن کاملSubmesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean
With radar interferometry, the next-generation Surface Water and Ocean Topography satellite mission will improve the measured sea surface height resolution down to 15 km, allowing us to investigate for the first time the global upper ocean variability at the submesoscale range. Here, by analysing shipboard Acoustic Doppler Current Profiler measurements along 137°E in the northwest Pacific of 20...
متن کاملSubmesoscale Flows and Mixing in the Oceanic Surface Layer Using the Regional Oceanic Modeling System (ROMS)
The long-term goals of this project are to further the insight into the dynamics of submesoscale flow in the oceanic surface layer. Using the Regional Oceanic Modeling System (ROMS), we aim to understand the impact of submesoscale processes on tracer mixing at small scales and the transfer of energy towards the dissipative scales of non-geostrophic turbulence. An advanced understanding of surfa...
متن کاملSeasonality in submesoscale turbulence
Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1-100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air-sea fluxes, and bring dee...
متن کامل